From Wakapon
Jump to: navigation, search
Line 76: Line 76:
 
* Spectral characteristics similar to natural light sources
 
* Spectral characteristics similar to natural light sources
 
* Reproducible in the laboratory
 
* Reproducible in the laboratory
 +
 +
The white point of an illuminant is the chromaticity of a white object under the illuminant.
  
  
Line 105: Line 107:
  
 
=White Point=
 
=White Point=
 +
The white point is a very important data as it defines the color "white" in image capture, encoding, or reproduction. Depending on the application, different definitions of white are needed to give acceptable results. For example, photographs taken indoors may be lit by incandescent lights, which are relatively orange compared to daylight. Defining "white" as daylight will give unacceptable results when attempting to color correct a photograph taken with incandescent lighting.
 +
 +
Illuminant and white point are separate concepts. For a given illuminant, its white point is uniquely defined. A given white point, on the other hand, generally does not uniquely correspond to only one illuminant. From the commonly used CIE 1931 chromaticity diagram, it can be seen that almost all non-spectral colors, including colors described as white, can be produced by infinitely many combinations of spectral colors, and therefore by infinitely many different illuminant spectra.
 +
 +
 
(source from http://en.wikipedia.org/wiki/Standard_illuminant#White_point)
 
(source from http://en.wikipedia.org/wiki/Standard_illuminant#White_point)
  

Revision as of 16:52, 31 December 2011

Color Spaces

A color space is the 3-dimensional space in which colors can be represented. 3 dimensions are enough for most applications to describe a color faithfully but various conventions can be chosen to create each dimension depending on the intended goal (processing, display, accuracy, perception, etc.).

Some of the color spaces are RGB, CIEXYZ, CIExyY, CIELAB, HSV, HSB, HSL, YUV.

RGB

Black Body

The color (chromaticity) of blackbody radiation depends on the temperature of the black body; the locus of such colors, shown here in CIE 1931 x,y space, is known as the Planckian locus.
Blackbody-colours-vertical.png

A black body is an idealized physical body that absorbs all incident electromagnetic radiation. Because of this perfect absorptivity at all wavelengths, a black body is also the best possible emitter of thermal radiation, which it radiates incandescently in a characteristic, continuous spectrum that depends on the body's temperature. At Earth-ambient temperatures this emission is in the infrared region of the electromagnetic spectrum and is not visible. The object appears black, since it does not reflect or emit any visible light.

The thermal radiation from a black body is energy converted electrodynamically from the body's pool of internal thermal energy at any temperature greater than absolute zero. It is called blackbody radiation and has a frequency distribution with a characteristic frequency of maximum radiative power that shifts to higher frequencies with increasing temperature. As the temperature increases past a few hundred degrees Celsius, black bodies start to emit visible wavelengths, appearing red, orange, yellow, white, and blue with increasing temperature. When an object is visually white, it is emitting a substantial fraction as ultraviolet radiation.

In terms of wavelength (λ), Planck's law is written:

<math>B_\lambda(T) =\frac{2 hc^2}{\lambda^5}\frac{1}{ e^{\frac{hc}{\lambda k_\mathrm{B}T}} - 1}</math>

where B is the spectral radiance, T is the absolute temperature of the black body, kB is the Boltzmann constant, h is the Planck constant, and c is the speed of light.

(source http://en.wikipedia.org/wiki/Planck%27s_law)


Correlated Color Temperature (CCT)

Temperature Source
1,700 K Match flame
1,850 K Candle flame, sunset/sunrise
2,700–3,300 K Incandescent light bulb
3,200 K Studio lamps, photofloods, etc.
3,350 K Studio "CP" light
4,100–4,150 K Moonlight, xenon arc lamp
5,000 K Horizon daylight
5,500–6,000 K Vertical daylight, electronic flash
6,500 K Daylight, overcast
6,500–9,300 K LCD or CRT screen
These temperatures are merely characteristic;
considerable variation may be present.

Color Temperatures (source http://www.soultravelmultimedia.com/2010/04/11/what-is-kelvin-temperature-and-how-can-photographers-make-it-work-for-them/)


CIE Illuminants

Used for :

  • Describing general lighting conditions (when taking a picture, or displaying one).
  • Spectral characteristics similar to natural light sources
  • Reproducible in the laboratory

The white point of an illuminant is the chromaticity of a white object under the illuminant.


1931 Illuminants

  • Illuminant A = Typical Incandescent Light (2856 K)
  • Illuminant B = Direct Sunlight
  • Illuminant C = Average daylight from total sky (ambient sky light)


1963 Illuminants

  • Illuminant D = Phases of daylight.
  • Necessarily followed by the first 2 digits of the CCT (e.g. D65 = D 6504K)
  • Represent daylight more completely and accurately than do Illuminants B and C because the spectral distributions for the D Illuminants have been defined across the ultraviolet (UV), visible, and near-infrared (IR) wavelengths (300–830 nm).
  • Most industries use D65 when daylight viewing conditions are required
  • D50 is used by graphic arts industry => more spectrally balanced across spectrum

Please refer to the D Illuminant Computation page for an interesting way of computing the SPD from CCT.


Other Illuminants

  • Illuminant E = Equal energy illuminant
  • Illuminant F = Fluorescent lamps of different composition.
    • F1–F6 "standard" fluorescent lamps consist of two semi-broadband emissions of antimony and manganese activations in calcium halophosphate phosphor.
    • F4 is of particular interest since it was used for calibrating the CIE Color Rendering Index (the CRI formula was chosen such that F4 would have a CRI of 51).
    • F7–F9 are "broadband" (full-spectrum light) fluorescent lamps with multiple phosphors, and higher CRIs.
    • F10–F12 are narrow triband illuminants consisting of three "narrowband" emissions (caused by ternary compositions of rare-earth phosphors) in the R,G,B regions of the visible spectrum. The phosphor weights can be tuned to achieve the desired CCT.


White Point

The white point is a very important data as it defines the color "white" in image capture, encoding, or reproduction. Depending on the application, different definitions of white are needed to give acceptable results. For example, photographs taken indoors may be lit by incandescent lights, which are relatively orange compared to daylight. Defining "white" as daylight will give unacceptable results when attempting to color correct a photograph taken with incandescent lighting.

Illuminant and white point are separate concepts. For a given illuminant, its white point is uniquely defined. A given white point, on the other hand, generally does not uniquely correspond to only one illuminant. From the commonly used CIE 1931 chromaticity diagram, it can be seen that almost all non-spectral colors, including colors described as white, can be produced by infinitely many combinations of spectral colors, and therefore by infinitely many different illuminant spectra.


(source from http://en.wikipedia.org/wiki/Standard_illuminant#White_point)

The spectrum of a standard illuminant, like any other profile of light, can be converted into tristimulus values. The set of three tristimulus coordinates of an illuminant is called a white point. If the profile is normalised, then the white point can equivalently be expressed as a pair of chromaticity coordinates. If an image is recorded in tristimulus coordinates (or in values which can be converted to and from them), then the white point of the illuminant used gives the maximum value of the tristimulus coordinates that will be recorded at any point in the image, in the absence of fluorescence. It is called the white point of the image. The process of calculating the white point discards a great deal of information about the profile of the illuminant, and so although it is true that for every illuminant the exact white point can be calculated, it is not the case that knowing the white point of an image alone tells you a great deal about the illuminant that was used to record it.

White points of standard illuminants

A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfect reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). The color swatches represent the hue of each white point, calculated with luminance Y=0.54 and the standard observer, assuming correct sRGB display calibration.

White points
Name CIE 1931 2° CIE 1964 10° CCT (K) Hue Note
x2 y2 x10 y10
A 0.44757 0.40745 0.45117 0.40594 2856 Incandescent / Tungsten
B 0.34842 0.35161 0.34980 0.35270 4874 {obsolete} Direct sunlight at noon
C 0.31006 0.31616 0.31039 0.31905 6774 {obsolete} Average / North sky Daylight
D50 0.34567 0.35850 0.34773 0.35952 5003 Horizon Light. ICC profile PCS
D55 0.33242 0.34743 0.33411 0.34877 5503 Mid-morning / Mid-afternoon Daylight
D65 0.31271 0.32902 0.31382 0.33100 6504 Noon Daylight: Television, sRGB color space
D75 0.29902 0.31485 0.29968 0.31740 7504 North sky Daylight
E 1/3 1/3 1/3 1/3 5454 Equal energy
F1 0.31310 0.33727 0.31811 0.33559 6430 Daylight Fluorescent
F2 0.37208 0.37529 0.37925 0.36733 4230 Cool White Fluorescent
F3 0.40910 0.39430 0.41761 0.38324 3450 White Fluorescent
F4 0.44018 0.40329 0.44920 0.39074 2940 Warm White Fluorescent
F5 0.31379 0.34531 0.31975 0.34246 6350 Daylight Fluorescent
F6 0.37790 0.38835 0.38660 0.37847 4150 Lite White Fluorescent
F7 0.31292 0.32933 0.31569 0.32960 6500 D65 simulator, Daylight simulator
F8 0.34588 0.35875 0.34902 0.35939 5000 D50 simulator, Sylvania F40 Design 50
F9 0.37417 0.37281 0.37829 0.37045 4150 Cool White Deluxe Fluorescent
F10 0.34609 0.35986 0.35090 0.35444 5000 Philips TL85, Ultralume 50
F11 0.38052 0.37713 0.38541 0.37123 4000 Philips TL84, Ultralume 40
F12 0.43695 0.40441 0.44256 0.39717 3000 Philips TL83, Ultralume 30


References

An Introduction to Appearance Analysis (2001) http://www.color.org/ss84.pdf