From Wakapon
Jump to: navigation, search
Line 4: Line 4:
  
 
==Bases==
 
==Bases==
 +
 +
===Axiome, Théorie Axiomatique===
 
(http://fr.wikipedia.org/wiki/Axiome)
 
(http://fr.wikipedia.org/wiki/Axiome)
* Un '''axiome''' (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi » – lui-même dérivé de αξιος (axios), signifiant « digne ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l'Antiquité, un axiome était une affirmation qu'ils considéraient comme évidente et qui n'avait nul besoin de preuve.
+
 
 +
Un '''axiome''' (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi » – lui-même dérivé de αξιος (axios), signifiant « digne ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l'Antiquité, un axiome était une affirmation qu'ils considéraient comme évidente et qui n'avait nul besoin de preuve.
  
 
L'ensemble des axiomes d'une théorie est appelé axiomatique ou théorie axiomatique. Cette axiomatique définit la théorie ; ce qui signifie que l'axiome ne peut être remis en cause à l'intérieur de cette théorie, on dit alors que cette théorie est consistante. Un axiome représente donc plutôt un point de départ dans un système de logique et il peut être choisi arbitrairement. La pertinence d'une théorie dépend de la pertinence de ses axiomes et de son interprétation. En réalité, c'est de la non cohérence de son interprétation que vient la réfutation de la théorie non contradictoire et, par voie de conséquence, de son axiomatique. L'axiome est donc à la logique mathématique, ce qu'est le postulat à la physique théorique.
 
L'ensemble des axiomes d'une théorie est appelé axiomatique ou théorie axiomatique. Cette axiomatique définit la théorie ; ce qui signifie que l'axiome ne peut être remis en cause à l'intérieur de cette théorie, on dit alors que cette théorie est consistante. Un axiome représente donc plutôt un point de départ dans un système de logique et il peut être choisi arbitrairement. La pertinence d'une théorie dépend de la pertinence de ses axiomes et de son interprétation. En réalité, c'est de la non cohérence de son interprétation que vient la réfutation de la théorie non contradictoire et, par voie de conséquence, de son axiomatique. L'axiome est donc à la logique mathématique, ce qu'est le postulat à la physique théorique.
  
=== Exemple ===
+
==== Exemple ====
Probablement le plus ancien et aussi le plus célèbre système d'axiomes est celui des 5 postulats d'Euclide. Ceux-ci s'avérèrent être assez incomplets, et beaucoup plus d'axiomes sont nécessaires pour caractériser complètement la géométrie d'Euclide (Hilbert en a utilisé 26 dans son axiomatique de la géométrie euclidienne).
+
on peut définir une arithmétique simple, comprenant un ensemble de « nombres » et une loi de composition, +, interne à cet ensemble, en posant (en s'inspirant un peu de Peano) :
 +
# un nombre noté 0 existe
 +
# tout nombre X a un successeur noté succ(X)
 +
# X+0 = X
 +
# succ(X) + Y = X + succ(Y)
 +
 
 +
A l'aide de ces axiomes on peut démontrer que succ(X) = X+1 puisque d'après 3) et 4) succ(X)+0 = X+succ(0) = X+1
 +
 
  
Le cinquième postulat (par un point en dehors d'une droite, il passe exactement une parallèle à cette droite) a été suspecté d'être une conséquence des 4 premiers pendant presque deux millénaires. Finalement, le cinquième postulat s'est avéré être indépendant des quatre premiers. En effet, nous pouvons supposer qu'aucune parallèle ne passe par un point situé en dehors d'une droite, ou qu'il existe une unique parallèle, ou encore qu'il en existe une infinité. Chacun de ces choix nous donne différentes formes alternatives de géométrie, dans lesquelles les mesures des angles intérieurs d'un triangle s'ajoutent pour donner une valeur inférieure, égale ou supérieure à la mesure de l'angle formé par une droite (angle plat). Ces géométries sont connues en tant que géométries elliptique, euclidienne et hyperbolique respectivement. La relativité générale affirme que la masse donne à l'espace une courbure, c'est-à-dire que l'espace physique n'est pas euclidien.
+
===Théorème===
 +
(http://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me)
  
 +
Un '''théorème''' est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes.
  
 +
Un théorème a généralement :
 +
* des hypothèses de base, i.e. des conditions qui peuvent être énumérées dans le théorème ou décrites d'avance,
 +
* une conclusion, i.e. une affirmation mathématique qui est vraie sous les conditions de base.
 +
 +
La démonstration, bien que nécessaire à la classification de la proposition comme « théorème », n'est pas considérée comme faisant partie du théorème.
 +
 +
La démonstration comprend :
 +
* des axiomes ;
 +
* les hypothèses du théorème ;
 +
* d'autres théorèmes déjà démontrés.
 +
 +
Chaque étape de la preuve est liée aux précédentes par des règles d'inférence logiques.
 +
 +
 +
===Ensemble===
 
(http://fr.wikipedia.org/wiki/Ensemble)
 
(http://fr.wikipedia.org/wiki/Ensemble)
* Un '''ensemble''' désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout » (au sens d'omnis).
+
 
 +
Un '''ensemble''' désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout » (au sens d'omnis).
 +
 
  
  

Revision as of 18:40, 1 September 2013

Je vais tenter de me ré-initier à une catégorie des mathématiques que mes profs de math-sup m'avaient fait détester: l'analyse. Et plus particulièrement, la théorie des groupes. 

Comme c'est souvent le cas avec les sujets qu'on me force à ingurgiter, je mets un points d'honneur à n'en rien retenir. Je vais donc tout reprendre de zéro... Ces pages me serviront de notes de lecture et suivront l'ordre dans lequel je me serai de nouveau familiarisé avec ce sujet.

Bases

Axiome, Théorie Axiomatique

(http://fr.wikipedia.org/wiki/Axiome)

Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi » – lui-même dérivé de αξιος (axios), signifiant « digne ») désigne une vérité indémontrable qui doit être admise. Pour certains philosophes grecs de l'Antiquité, un axiome était une affirmation qu'ils considéraient comme évidente et qui n'avait nul besoin de preuve.

L'ensemble des axiomes d'une théorie est appelé axiomatique ou théorie axiomatique. Cette axiomatique définit la théorie ; ce qui signifie que l'axiome ne peut être remis en cause à l'intérieur de cette théorie, on dit alors que cette théorie est consistante. Un axiome représente donc plutôt un point de départ dans un système de logique et il peut être choisi arbitrairement. La pertinence d'une théorie dépend de la pertinence de ses axiomes et de son interprétation. En réalité, c'est de la non cohérence de son interprétation que vient la réfutation de la théorie non contradictoire et, par voie de conséquence, de son axiomatique. L'axiome est donc à la logique mathématique, ce qu'est le postulat à la physique théorique.

Exemple

on peut définir une arithmétique simple, comprenant un ensemble de « nombres » et une loi de composition, +, interne à cet ensemble, en posant (en s'inspirant un peu de Peano) :

  1. un nombre noté 0 existe
  2. tout nombre X a un successeur noté succ(X)
  3. X+0 = X
  4. succ(X) + Y = X + succ(Y)

A l'aide de ces axiomes on peut démontrer que succ(X) = X+1 puisque d'après 3) et 4) succ(X)+0 = X+succ(0) = X+1


Théorème

(http://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me)

Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes.

Un théorème a généralement :

  • des hypothèses de base, i.e. des conditions qui peuvent être énumérées dans le théorème ou décrites d'avance,
  • une conclusion, i.e. une affirmation mathématique qui est vraie sous les conditions de base.

La démonstration, bien que nécessaire à la classification de la proposition comme « théorème », n'est pas considérée comme faisant partie du théorème.

La démonstration comprend :

  • des axiomes ;
  • les hypothèses du théorème ;
  • d'autres théorèmes déjà démontrés.

Chaque étape de la preuve est liée aux précédentes par des règles d'inférence logiques.


Ensemble

(http://fr.wikipedia.org/wiki/Ensemble)

Un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout » (au sens d'omnis).



Fondements

Théorie des Groupes